Summary of Notation

name notation traditional notation
function \( z \mathrel{\overset{f}{\leftarrow}} (x, y) \) \( f : \mathbb{R}^2 \to \mathbb{R} \)
dependence \( z \depends (x, y) \) \( (x, y) \mapsto z \)
differential \( \diff z \) \( d z \)
derivative \( \overset{x}{\diff} z \) \( {\displaystyle \frac{d z}{d x} } \)
slope \( \operatorname{\overset{\mathit{x}}{\slope}} z \)
bend \( \operatorname{\overset{\mathit{x}}{\bend}} z \)
natural base \( \naturalbase \) \( e \)
natural exponential \( \exp \)
natural logarithm \( \log \) \( \ln \)
partials \( \overset{x}{\diff} z \andSpaced \overset{y}{\diff} z \) \( {\displaystyle \frac{\partial z}{\partial x} \andSpaced \frac{\partial z}{\partial y} } \)
slopes \( \operatorname{\overset{\mathit{x}}{\slope}} z \andSpaced \operatorname{\overset{\mathit{y}}{\slope}} z \)
bends \( \operatorname{\overset{\mathit{x}}{\bend}} z \andSpaced \operatorname{\overset{\mathit{y}}{\bend}} z \)
warp \( \warp z \)
standard metrics \( \hat{\standard}_{x} \andSpaced \hat{\standard}_{y} \)
metric differential \( \hat{\diff} z \)
tangent metric \( \tangent z \)
Hessian polymetric \( \hessian z \)
saddle discriminant \( \discriminant z \)
standard vectors \( \vec{\standard}_{x} \andSpaced \vec{\standard}_{y} \) \( {\displaystyle \begin{bmatrix}1 \\ 0\end{bmatrix} \andSpaced \begin{bmatrix}0 \\ 1\end{bmatrix} } \)
standard rulers \( \bar{\standard}_{x} \andSpaced \bar{\standard}_{y} \) \( {\displaystyle \begin{bmatrix}1 & 0\end{bmatrix} \andSpaced \begin{bmatrix}0 & 1\end{bmatrix} } \)
measurement \( \langle{r}\mathbin{|}{v}\rangle \) \( {\displaystyle \begin{bmatrix}x_r & y_r\end{bmatrix} \begin{bmatrix}x_v \\ y_v\end{bmatrix} } \)
magnitude \( \magnitude v \) \( \lVert v \rVert \)
transpose \( \transpose r \)
ruler differential \( \bar{\diff} z \)
directional slope \( \operatorname{\overset{\mathit{v}}{\directional}} z \)
gradient \( \gradient z \) \( \lVert \nabla z \rVert \)
blip \( [x_0]_{x} \)
interval \( [x_1, x_2]_{x} \) \( [x_1, x_2] \)
boundary \( \boundary b \)
integral \( {\displaystyle \biggl\langle{a \mult \bar{\diff} x}\mathrel{\displaystyle{\int}}{[x_1, x_2]_{x}}\biggr\rangle } \) \( {\displaystyle \int_{x_1}^{x_2} a \, d x } \)
position vector \( \position p \)
velocity vector \( \velocity z \)
speed \( \speed z \)
one revolution \( \revolution \) \( 2 \pi \)