Summary of Abstract Differential Laws

The following differential rules hold for the differential in all of its forms: the derivative, partials, the metric differential, and the ruler differential. We assume that
\[ \begin{align} u &: \Number, & v &: \Number, & c &: \Number \end{align} \]
are numbers, \( c \) is constant, and any necessary restrictions are present.
function differential law
constant \( {\displaystyle \diff (c) = 0 } \)
constant-adder \( {\displaystyle \diff (u + c) = \diff u } \)
constant-multiplier \( {\displaystyle \diff (c \mult u) = c \mult \diff u } \)
addition \( {\displaystyle \diff (u + v) = \diff u + \diff v } \)
negation \( {\displaystyle \diff (- v) = - \diff v } \)
subtraction \( {\displaystyle \diff (u - v) = \diff u - \diff v } \)
multiplication \( {\displaystyle \diff (u \mult v) = v \mult \diff u + u \mult \diff v } \)
reciprocal \( {\displaystyle \diff \biggl(\frac{1}{v}\biggr) = \frac{- 1}{v^2} \mult \diff v } \)
division \( {\displaystyle \diff \biggl(\frac{u}{v}\biggr) = \frac{1}{v} \mult \diff u - \frac{u}{v^2} \mult \diff v } \)
squaring \( {\displaystyle \diff \bigl(u^2\bigr) = 2 u \mult \diff u } \)
cubing \( {\displaystyle \diff \bigl(u^3\bigr) = 3 u^2 \mult \diff u } \)
square root \( {\displaystyle \diff \bigl(\sqrt[2]{u}\bigr) = \frac{1}{2 \mult \sqrt[2]{u}} \mult \diff u } \)
cube root \( {\displaystyle \diff \bigl(\sqrt[3]{u}\bigr) = \frac{1}{3 \mult \bigl(\sqrt[3]{u}\bigr)^2} \mult \diff u } \)
base \( {\displaystyle \diff \bigl(v^c\bigr) = c \mult v^{c - 1} \mult \diff v } \)
exponential \( {\displaystyle \diff \bigl(c^u\bigr) = c^u \mult \log c \mult \diff u } \)
power \( {\displaystyle \diff \bigl(v^u\bigr) = v^u \mult \log v \mult \diff u + u \mult v^{u-1} \mult \diff v } \)
natural exponential \( {\displaystyle \diff (\exp u) = \exp u \mult \diff u } \)
natural logarithm \( {\displaystyle \diff (\log u) = \frac{1}{u} \mult \diff u } \)
cosine \( {\displaystyle \diff (\cos u) = - \sin u \mult \diff u } \)
sine \( {\displaystyle \diff (\sin u) = \cos u \mult \diff u } \)