Consider the vector
\[
\begin{align}
v &: \Vector_{(x, y)}
\\
v &= \vec{\standard}_{x} + 2 \mult \vec{\standard}_{y}.
\end{align}
\]
Let's find the magnitude of \( v \).
\[
\begin{align}
\magnitude v &= \sqrt[2]{1^2 + 2^2} = \sqrt[2]{5}
\end{align}
\]
We'll scale \( v \) to produce a unit vector \( v^{\prime} \).
\[
\begin{align}
v^{\prime} &= \frac{v}{\magnitude v} = \frac{\vec{\standard}_{x} + 2 \mult \vec{\standard}_{y}}{\sqrt[2]{5}} = \frac{1}{\sqrt[2]{5}} \mult \vec{\standard}_{x} + \frac{2}{\sqrt[2]{5}} \mult \vec{\standard}_{y}
\end{align}
\]
Since \( v^{\prime} \) is a unit vector, it fits as a ray on the unit circle.