Let's find the distance between the points
\[
\begin{align}
p_1 &= (-1, 1)
&
&\andSpaced
&
p_2 &= (4, -2).
\end{align}
\]
We'll start by finding the vector from \( p_1 \) to \( p_2 \).
\[
\begin{align}
v &= \position p_2 - \position p_1
\\
&= \bigl(4 \mult \vec{\standard}_{x} - 2 \mult \vec{\standard}_{y}\bigr) - \bigl(- \vec{\standard}_{x} + \vec{\standard}_{y}\bigr)
\\
&= 5 \mult \vec{\standard}_{x} - 3 \mult \vec{\standard}_{y}
\end{align}
\]
Now that we have our vector \( v \), let's find its magnitude.
\[
\begin{align}
\magnitude v &= \sqrt[2]{5^2 + (-3)^2} = \sqrt[2]{25 + 9} = \sqrt[2]{34}
\end{align}
\]
The distance between \( p_1 \) and \( p_2 \) is \( \sqrt[2]{34} \).