Let's measure the vector
\[
\begin{align}
v &: \Vector_{(x, y)}
\\
v &= 2 \mult \vec{\standard}_{x} - 3 \mult \vec{\standard}_{y}
\end{align}
\]
with both of the standard rulers. We'll start by measuring with the standard \( x \)-ruler.
\[
\begin{align}
\bigl\langle{\bar{\standard}_{x}}\mathbin{\big|}{v}\bigr\rangle &= \bigl\langle{\bar{\standard}_{x}}\mathbin{\big|}{2 \mult \vec{\standard}_{x} - 3 \mult \vec{\standard}_{y}}\bigr\rangle
\\
&= \bigl\langle{\bar{\standard}_{x}}\mathbin{\big|}{2 \mult \vec{\standard}_{x}}\bigr\rangle - \bigl\langle{\bar{\standard}_{x}}\mathbin{\big|}{3 \mult \vec{\standard}_{y}}\bigr\rangle
\\
&= 2 \mult \bigl\langle{\bar{\standard}_{x}}\mathbin{\big|}{\vec{\standard}_{x}}\bigr\rangle - 3 \mult \bigl\langle{\bar{\standard}_{x}}\mathbin{\big|}{\vec{\standard}_{y}}\bigr\rangle
\\
&= 2 \mult 1 - 3 \mult 0
\\
&= 2
\end{align}
\]
And now let's measure using the standard \( y \)-ruler.
\[
\begin{align}
\bigl\langle{\bar{\standard}_{y}}\mathbin{\big|}{v}\bigr\rangle &= \bigl\langle{\bar{\standard}_{y}}\mathbin{\big|}{2 \mult \vec{\standard}_{x} - 3 \mult \vec{\standard}_{y}}\bigr\rangle
\\
&= \bigl\langle{\bar{\standard}_{y}}\mathbin{\big|}{2 \mult \vec{\standard}_{x}}\bigr\rangle - \bigl\langle{\bar{\standard}_{y}}\mathbin{\big|}{3 \mult \vec{\standard}_{y}}\bigr\rangle
\\
&= 2 \mult \bigl\langle{\bar{\standard}_{y}}\mathbin{\big|}{\vec{\standard}_{x}}\bigr\rangle - 3 \mult \bigl\langle{\bar{\standard}_{y}}\mathbin{\big|}{\vec{\standard}_{y}}\bigr\rangle
\\
&= 2 \mult 0 - 3 \mult 1
\\
&= -3
\end{align}
\]