Let's see whether the ruler
\[
\begin{align}
r &: \Ruler_{(x, y)}
\\
r &= x y^2 \mult \bar{\standard}_{x} + x \mult \bar{\standard}_{y}
\end{align}
\]
is tame or wild.
\[
\begin{align}
\bar{\diff} r &= \bar{\diff} \bigl(x y^2 \mult \bar{\standard}_{x} + x \mult \bar{\standard}_{y}\bigr)
\\
&= \bar{\diff} \bigl(x y^2 \mult \bar{\standard}_{x}\bigr) + \bar{\diff} \bigl(x \mult \bar{\standard}_{y}\bigr)
\\
&= \bar{\diff} \bigl(x y^2\bigr) \mult \bar{\standard}_{x} + \bar{\standard}_{x} \mult \bar{\standard}_{y}
\\
&= y^2 \mult \bar{\standard}_{x} \mult \bar{\standard}_{x} + 2 x y \mult \bar{\standard}_{y} \mult \bar{\standard}_{x} + \bar{\standard}_{x} \mult \bar{\standard}_{y}
\\
&= - 2 x y \mult \bar{\standard}_{x} \mult \bar{\standard}_{y} + \bar{\standard}_{x} \mult \bar{\standard}_{y}
\\
&= (1 - 2 x y) \mult \bar{\standard}_{x} \mult \bar{\standard}_{y}
\end{align}
\]
We see that the polyruler \( \bar{\diff} r \) is not identically zero. Although there may be some points where \( \bar{\diff} r \) is zero, say
\[
\begin{align}
\biggl(\frac{1}{2}, 1\biggr) &: \Point_{(x, y)},
\end{align}
\]
it's easy to find points where the polyruler is non-zero. So \( r \) is wild.