Suppose we have a ruler, a path, and a time interval
\[
\begin{align}
\bar{\diff} z &: \Ruler_{(x, y)}
&
p &: \Path_{(x, y)}
&
i &: \Interval_{t}
\end{align}
\]
where \( z \depends (x, y) \) is a function. We define the path integral
\[
\begin{align}
\Bigl\langle{\bar{\diff} z}\mathrel{\overset{p}{\textstyle{\int}}}{i}\Bigr\rangle &: \Number
\\
\Bigl\langle{\bar{\diff} z}\mathrel{\overset{p}{\textstyle{\int}}}{i}\Bigr\rangle &= \Bigl\langle{z}\mathrel{\overset{p}{\textstyle{\int}}}{\boundary i}\Bigr\rangle
\end{align}
\]
by trading the differential for a boundary.