14.3 Path Integrals

Let's see how we take an integral along a path.
Definition.
Suppose we have a ruler, a path, and a time interval
\[ \begin{align} \bar{\diff} z &: \Ruler_{(x, y)} & p &: \Path_{(x, y)} & i &: \Interval_{t} \end{align} \]
where \( z \depends (x, y) \) is a function. We define the path integral
\[ \begin{align} \Bigl\langle{\bar{\diff} z}\mathrel{\overset{p}{\textstyle{\int}}}{i}\Bigr\rangle &: \Number \\ \Bigl\langle{\bar{\diff} z}\mathrel{\overset{p}{\textstyle{\int}}}{i}\Bigr\rangle &= \Bigl\langle{z}\mathrel{\overset{p}{\textstyle{\int}}}{\boundary i}\Bigr\rangle \end{align} \]
by trading the differential for a boundary.
A path integral has many ingredients. An example should help us see how they all work together.
Example.
Consider the path integral
\[ \begin{align} &\biggl\langle{\bar{\diff} z}\mathrel{\overset{p}{\displaystyle{\int}}}{i}\biggr\rangle \end{align} \]
where
\[ \begin{align} z &\depends (x, y) & p &: \Path_{(x, y)} & i &: \Interval_{t} \\ z &= x y & &\left\{\begin{aligned} x_p &= 3 t \\ y_p &= t \end{aligned}\right. & i &= [1, 4]_{t}. \end{align} \]
We calculate.
\[ \begin{align} \biggl\langle{\bar{\diff} z}\mathrel{\overset{p}{\displaystyle{\int}}}{i}\biggr\rangle &= \biggl\langle{z}\mathrel{\overset{p}{\displaystyle{\int}}}{\boundary [1, 4]_{t}}\biggr\rangle \\ &= \biggl\langle{z}\mathrel{\overset{p}{\displaystyle{\int}}}{[4]_{t}}\biggr\rangle - \biggl\langle{z}\mathrel{\overset{p}{\displaystyle{\int}}}{[1]_{t}}\biggr\rangle \\ &= \biggl\langle{x y}\mathrel{\overset{p}{\displaystyle{\int}}}{[4]_{t}}\biggr\rangle - \biggl\langle{x y}\mathrel{\overset{p}{\displaystyle{\int}}}{[1]_{t}}\biggr\rangle \\ &= \biggl\langle{3 t^2}\mathrel{\displaystyle{\int}}{[4]_{t}}\biggr\rangle - \biggl\langle{3 t^2}\mathrel{\displaystyle{\int}}{[1]_{t}}\biggr\rangle \\ &= 48 - 3 \\ &= 45 \end{align} \]
The path integral of a differential \( \bar{\diff} z \) computes a change in height! Let's visualize a path integral using a contour map.
Example.
Consider the path \( p \) drawn on the contour map for a function \( z \depends (x, y) \).
Our path begins at height \( z = 2 \) and ends at height \( z = 4 \). The path integral with ruler \( \bar{\diff} z \) computes the change in height.
\[ \begin{align} \biggl\langle{\bar{\diff} z}\mathrel{\overset{p}{\displaystyle{\int}}}{i}\biggr\rangle &= \biggl\langle{z}\mathrel{\overset{p}{\displaystyle{\int}}}{\boundary i}\biggr\rangle = 4 - 2 = 2 \end{align} \]