\[
\begin{align}
z &\depends (x, y)
\\
z &= x^2 - y^2,
\end{align}
\]
at the point \( p = (1, 1) \). We can calculate the differential as
\[
\begin{align}
\bar{\diff} z &= 2 x \mult \bar{\standard}_{x} - 2 y \mult \bar{\standard}_{y}
\end{align}
\]
and by localizing at our point, we find the ruler
\[
\begin{align}
\bar{\diff} z &= 2 \mult \bar{\standard}_{x} - 2 \mult \bar{\standard}_{y}.
\end{align}
\]
Let's find the directional slopes for the vectors \( v = \vec{\standard}_{x} - \vec{\standard}_{y} \) and \( w = \vec{\standard}_{x} + \vec{\standard}_{y} \). These are not unit vectors, so we'll work from the definition.
\[
\begin{align}
\operatorname{\overset{\mathit{v}}{\directional}} z &= \frac{\bigl\langle{\bar{\diff} z}\mathbin{\big|}{v}\bigr\rangle}{\magnitude v} = \frac{\bigl\langle{2 \mult \bar{\standard}_{x} - 2 \mult \bar{\standard}_{y}}\mathbin{\big|}{\vec{\standard}_{x} - \vec{\standard}_{y}}\bigr\rangle}{\sqrt[2]{2}} = \frac{4}{\sqrt[2]{2}}
\\
\operatorname{\overset{\mathit{w}}{\directional}} z &= \frac{\bigl\langle{\bar{\diff} z}\mathbin{\big|}{w}\bigr\rangle}{\magnitude w} = \frac{\bigl\langle{2 \mult \bar{\standard}_{x} - 2 \mult \bar{\standard}_{y}}\mathbin{\big|}{\vec{\standard}_{x} + \vec{\standard}_{y}}\bigr\rangle}{\sqrt[2]{2}} = 0
\end{align}
\]
If we leave our point \( p \) traveling in the direction given by \( v \), we'll be heading uphill at a slope of \( 4 / \sqrt[2]{2} \). If we instead travel in the direction of \( w \), we'll find a slope of zero.