The first ruler differential
\[
\begin{align}
\bar{\diff} z &= a \mult \bar{\standard}_{x} + b \mult \bar{\standard}_{y}
\end{align}
\]
has partials for parts
\[
\begin{align}
a &= \overset{x}{\diff} z
&
b &= \overset{y}{\diff} z.
\end{align}
\]
Taking the second differential, we find
\[
\begin{align}
&\bar{\diff} \bar{\diff} z = \Bigl(\overset{x}{\diff} b - \overset{y}{\diff} a\Bigr) \mult \bar{\standard}_{x} \mult \bar{\standard}_{y} = \Bigl(\overset{x}{\diff} \overset{y}{\diff} z - \overset{y}{\diff} \overset{x}{\diff} z\Bigr) \mult \bar{\standard}_{x} \mult \bar{\standard}_{y}.
\end{align}
\]
\[
\begin{align}
\overset{y}{\diff} \overset{x}{\diff} z &= \overset{x}{\diff} \overset{y}{\diff} z.
\end{align}
\]