Unlike polymetrics, polyvectors for the \( (x, y) \)-coordinate plane exist only in degrees zero, one, and two. In degree three, each of the possible products
\[
\begin{align}
&\vec{\standard}_{x} \mult \vec{\standard}_{x} \mult \vec{\standard}_{x},
&
&\vec{\standard}_{x} \mult \vec{\standard}_{x} \mult \vec{\standard}_{y},
&
&\vec{\standard}_{x} \mult \vec{\standard}_{y} \mult \vec{\standard}_{y},
&
&\vec{\standard}_{y} \mult \vec{\standard}_{y} \mult \vec{\standard}_{y}
\end{align}
\]
either contains \( \vec{\standard}_{x} \mult \vec{\standard}_{x} \) or \( \vec{\standard}_{y} \mult \vec{\standard}_{y} \) and is therefore zero. To get any degree three polyvectors, we would need to work in a space with more standard vectors.