Let's measure the polyvector
\[
\begin{align}
q &: \PolyVector_{(x, y)}^{2}
\\
q &= 3 \mult \vec{\standard}_{x} \mult \vec{\standard}_{y}
\end{align}
\]
with the polyruler
\[
\begin{align}
p &: \PolyRuler_{(x, y)}^{2}
\\
p &= -2 \mult \bar{\standard}_{x} \mult \bar{\standard}_{y}.
\end{align}
\]
We compute.
\[
\begin{align}
\langle{p}\mathbin{|}{q}\rangle &= \langle{-2 \mult \bar{\standard}_{x} \mult \bar{\standard}_{y}}\mathbin{|}{3 \mult \vec{\standard}_{x} \mult \vec{\standard}_{y}}\rangle
\\
&= {-2} \mult 3 \mult \langle{\bar{\standard}_{x} \mult \bar{\standard}_{y}}\mathbin{|}{\vec{\standard}_{x} \mult \vec{\standard}_{y}}\rangle
\\
&= -6
\end{align}
\]
That was easy!