The function
\[
\begin{align}
z &\depends (x, y)
\\
z &= x^2 y^3
\end{align}
\]
has differential
\[
\begin{align}
\bar{\diff} z &: \Ruler_{(x, y)}
\\
\bar{\diff} z &= 2 x y^3 \mult \bar{\standard}_{x} + 3 x^2 y^2 \mult \bar{\standard}_{y}.
\end{align}
\]
Let's take the second differential.
\[
\begin{align}
\bar{\diff} \bar{\diff} z &= \bar{\diff} \bigl(2 x y^3 \mult \bar{\standard}_{x} + 3 x^2 y^2 \mult \bar{\standard}_{y}\bigr)
\\
&= \bar{\diff} \bigl(2 x y^3\bigr) \mult \bar{\standard}_{x} + \bar{\diff} \bigl(3 x^2 y^2\bigr) \mult \bar{\standard}_{y}
\\
&= 2 \mult \bar{\diff} \bigl(x y^3\bigr) \mult \bar{\standard}_{x} + 3 \mult \bar{\diff} \bigl(x^2 y^2\bigr) \mult \bar{\standard}_{y}
\\
&= 2 \mult \bigl(y^3 \mult \bar{\diff} x + 3 x y^2 \mult \bar{\diff} y\bigr) \mult \bar{\standard}_{x} + 3 \mult \bigl(2 x y^2 \mult \bar{\diff} x + 2 x^2 y \mult \bar{\diff} y\bigr) \mult \bar{\standard}_{y}
\\
&= 2 \mult \bigl(y^3 \mult \bar{\standard}_{x} + 3 x y^2 \mult \bar{\standard}_{y}\bigr) \mult \bar{\standard}_{x} + 3 \mult \bigl(2 x y^2 \mult \bar{\standard}_{x} + 2 x^2 y \mult \bar{\standard}_{y}\bigr) \mult \bar{\standard}_{y}
\\
&= 2 y^3 \mult \bar{\standard}_{x} \mult \bar{\standard}_{x} + 6 x y \mult \bar{\standard}_{y} \mult \bar{\standard}_{x} + 6 x y \mult \bar{\standard}_{x} \mult \bar{\standard}_{y} + 6 x^2 y \mult \bar{\standard}_{y} \mult \bar{\standard}_{y}
\\
&= - 6 x y \mult \bar{\standard}_{x} \mult \bar{\standard}_{y} + 6 x y \mult \bar{\standard}_{x} \mult \bar{\standard}_{y}
\\
&= 0
\end{align}
\]
The second ruler differential of \( z \) is identically zero.