Let's compute the gradient for the
bowl
\[
\begin{align}
z &\depends (x, y)
\\
z &= x^2 + y^2.
\end{align}
\]
The differential is
\[
\begin{align}
\bar{\diff} z &= 2 x \mult \bar{\standard}_{x} + 2 y \mult \bar{\standard}_{y}
\end{align}
\]
and so the gradient is
\[
\begin{align}
\gradient z &= \magnitude \bar{\diff} z
\\
&= \magnitude \bigl(2 x \mult \bar{\standard}_{x} + 2 y \mult \bar{\standard}_{y}\bigr)
\\
&= \sqrt[2]{(2 x)^2 + (2 y)^2}
\\
&= 2 \mult \sqrt[2]{x^2 + y^2}.
\end{align}
\]
The gradient tells us how steep the graph is at any point. At the origin, \( (0, 0) \), the gradient is zero.
\[
\begin{align}
\gradient z &= 0
\end{align}
\]
At each of the points
\[
\begin{align}
(1, 0) &: \Point_{(x, y)},
&
(-1, 0) &: \Point_{(x, y)},
\\
(0, 1) &: \Point_{(x, y)},
&
(0, -1) &: \Point_{(x, y)}
\end{align}
\]
the gradient is two.
\[
\begin{align}
\gradient z &= 2
\end{align}
\]