Let's compute the differential of the function
\[
\begin{align}
z &\depends (x, y)
\\
z &= \exp (x y)
\end{align}
\]
as a ruler. We find
\[
\begin{align}
\bar{\diff} z &= \bar{\diff} (\exp (x y))
\\
&= \exp (x y) \mult \bar{\diff} (x y)
\\
&= \exp (x y) \mult \bigl(y \mult \bar{\diff} x + x \mult \bar{\diff} y\bigr)
\\
&= \exp (x y) \mult \bigl(y \mult \bar{\standard}_{x} + x \mult \bar{\standard}_{y}\bigr)
\\
&= y \mult \exp (x y) \mult \bar{\standard}_{x} + x \mult \exp (x y) \mult \bar{\standard}_{y}.
\end{align}
\]
This calculation should be familiar. A similar calculation will show that the metric differential of \( z \) is
\[
\begin{align}
\hat{\diff} z &= y \mult \exp (x y) \mult \hat{\standard}_{x} + x \mult \exp (x y) \mult \hat{\standard}_{y}.
\end{align}
\]