13.3 Integrals of Intervals

By computing the integral of an interval, we can measure the interval's length.
Definition.
Suppose we have a ruler and an interval
\[ \begin{align} \bar{\diff} z &: \Ruler_{x} & i &: \Interval_{x} \end{align} \]
where \( \bar{\diff} z \) is the differential of a function \( z \depends x \). The integral of \( i \)
\[ \begin{align} \Bigl\langle{\bar{\diff} z}\mathrel{\textstyle{\int}}{i}\Bigr\rangle &: \Number \\ \Bigl\langle{\bar{\diff} z}\mathrel{\textstyle{\int}}{i}\Bigr\rangle &= \Bigl\langle{z}\mathrel{\textstyle{\int}}{\boundary i}\Bigr\rangle \end{align} \]
is computed by trading the differential, \( \bar{\diff} \), for a boundary, \( \boundary \).
The standard ruler
\[ \begin{align} \bar{\standard}_{x} &: \Ruler_{x} \end{align} \]
is also known as the length ruler for the \( x \)-coordinate line.
Example.
Let's use the length ruler, \( \bar{\standard}_{x} \), to measure the interval \( [1, 5]_{x} \). We compute.
\[ \begin{align} \biggl\langle{\bar{\standard}_{x}}\mathrel{\displaystyle{\int}}{[1, 5]_{x}}\biggr\rangle &= \biggl\langle{\bar{\diff} x}\mathrel{\displaystyle{\int}}{[1, 5]_{x}}\biggr\rangle \\ &= \biggl\langle{x}\mathrel{\displaystyle{\int}}{\boundary [1, 5]_{x}}\biggr\rangle \\ &= \biggl\langle{x}\mathrel{\displaystyle{\int}}{[5]_{x} - [1]_{x}}\biggr\rangle \\ &= \biggl\langle{x}\mathrel{\displaystyle{\int}}{[5]_{x}}\biggr\rangle - \biggl\langle{x}\mathrel{\displaystyle{\int}}{[1]_{x}}\biggr\rangle \\ &= \biggl\langle{5}\mathrel{\displaystyle{\int}}{\sliced}\biggr\rangle - \biggl\langle{1}\mathrel{\displaystyle{\int}}{\sliced}\biggr\rangle \\ &= 4 \end{align} \]
The length integral just had us subtract one from five. That's fair enough!
Integrals become more interesting when our rulers include dependence.
Example.
Consider the function
\[ \begin{align} z &\depends x \\ z &= x^2. \end{align} \]
Let's compute the integral
\[ \begin{align} &\biggl\langle{\bar{\diff} z}\mathrel{\displaystyle{\int}}{[1, 2]_{x}}\biggr\rangle \end{align} \]
that measures the interval \( [1, 2]_{x} \) with the ruler \( \bar{\diff} z \). We find
\[ \begin{align} \biggl\langle{\bar{\diff} z}\mathrel{\displaystyle{\int}}{[1, 2]_{x}}\biggr\rangle &= \biggl\langle{z}\mathrel{\displaystyle{\int}}{\boundary [1, 2]_{x}}\biggr\rangle \\ &= \biggl\langle{z}\mathrel{\displaystyle{\int}}{[2]_{x} - [1]_{x}}\biggr\rangle \\ &= \biggl\langle{z}\mathrel{\displaystyle{\int}}{[2]_{x}}\biggr\rangle - \biggl\langle{z}\mathrel{\displaystyle{\int}}{[1]_{x}}\biggr\rangle \\ &= \biggl\langle{x^2}\mathrel{\displaystyle{\int}}{[2]_{x}}\biggr\rangle - \biggl\langle{x^2}\mathrel{\displaystyle{\int}}{[1]_{x}}\biggr\rangle \\ &= \biggl\langle{4}\mathrel{\displaystyle{\int}}{\sliced}\biggr\rangle - \biggl\langle{1}\mathrel{\displaystyle{\int}}{\sliced}\biggr\rangle \\ &= 3. \end{align} \]
This is not the measurement we would find using the length ruler, \( \bar{\standard}_{x} \).
What role did rulers play in previous example's integral? On the \( x \)-axis, the ruler
\[ \begin{align} \bar{\diff} z &= 2 x \mult \bar{\standard}_{x} \end{align} \]
is non-standard. We would like to measure the interval \( [1, 2]_{x} \) with this ruler. But to make the measurement, we should switch to \( z \)-coordinates! On the \( z \)-axis
\[ \begin{align} \bar{\diff} z &= \bar{\standard}_{z} \end{align} \]
is the standard ruler.
Measuring the corresponding interval \( [1, 4]_{z} \) just computes the change in height.
\[ \begin{align} \change_{z} &= 4 - 1 = 3 \end{align} \]
What would you expect to find if we measured the interval \( [-1, 2]_{x} \) instead? Or the interval \( [-1, 1]_{x} \)?