We can write the area polyruler \( \bar{\standard}_{x} \mult \bar{\standard}_{y} \) as the differential of the ruler \( r = x \mult \bar{\standard}_{y} \). Indeed,
\[
\begin{align}
\bar{\diff} r &= \bar{\diff} \bigl(x \mult \bar{\standard}_{y}\bigr) = \bar{\diff} x \mult \bar{\standard}_{y} = \bar{\standard}_{x} \mult \bar{\standard}_{y}.
\end{align}
\]
Let's use this to calculate the area \( A \).
\[
\begin{align}
A &= \biggl\langle{\bar{\standard}_{x} \mult \bar{\standard}_{y}}\mathrel{\displaystyle{\int}}{[x_1, x_2]_{x} \mult [y_1, y_2]_{y}}\biggr\rangle
\\
&= \biggl\langle{\bar{\diff} \bigl(x \mult \bar{\standard}_{y}\bigr)}\mathrel{\displaystyle{\int}}{[x_1, x_2]_{x} \mult [y_1, y_2]_{y}}\biggr\rangle
\\
&= \biggl\langle{x \mult \bar{\standard}_{y}}\mathrel{\displaystyle{\int}}{\boundary \bigl([x_1, x_2]_{x} \mult [y_1, y_2]_{y}\bigr)}\biggr\rangle
\\
&= \biggl\langle{x \mult \bar{\standard}_{y}}\mathrel{\displaystyle{\int}}{\boundary [x_1, x_2]_{x} \mult [y_1, y_2]_{y}}\biggr\rangle - \biggl\langle{x \mult \bar{\standard}_{y}}\mathrel{\displaystyle{\int}}{[x_1, x_2]_{x} \mult \boundary [y_1, y_2]_{y}}\biggr\rangle
\\
&= I_2 - I_1
\end{align}
\]
So far our calculation has produced the difference of two integrals \( I_2 - I_1 \). Let's first work with \( I_1 \).
\[
\begin{align}
I_1 &= \biggl\langle{x \mult \bar{\diff} y}\mathrel{\displaystyle{\int}}{[x_1, x_2]_{x} \mult \boundary [y_1, y_2]_{y}}\biggr\rangle
\\
&= \biggl\langle{x \mult \bar{\diff} y}\mathrel{\displaystyle{\int}}{[x_1, x_2]_{x} \mult [y_2]_{y}}\biggr\rangle - \biggl\langle{x \mult \bar{\diff} y}\mathrel{\displaystyle{\int}}{[x_1, x_2]_{x} \mult [y_1]_{y}}\biggr\rangle
\\
&= \biggl\langle{x \mult \bar{\diff} y_2}\mathrel{\displaystyle{\int}}{[x_1, x_2]_{x}}\biggr\rangle - \biggl\langle{x \mult \bar{\diff} y_1}\mathrel{\displaystyle{\int}}{[x_1, x_2]_{x}}\biggr\rangle
\\
&= \biggl\langle{0}\mathrel{\displaystyle{\int}}{[x_1, x_2]_{x}}\biggr\rangle - \biggl\langle{0}\mathrel{\displaystyle{\int}}{[x_1, x_2]_{x}}\biggr\rangle
\\
&= 0
\end{align}
\]
We find that \( I_1 \) is zero because \( y_1 \) and \( y_2 \) are constants. Let's pick up our calculation of the area with \( I_2 \).
\[
\begin{align}
A &= \biggl\langle{x \mult \bar{\diff} y}\mathrel{\displaystyle{\int}}{\boundary [x_1, x_2]_{x} \mult [y_1, y_2]_{y}}\biggr\rangle
\\
&= \biggl\langle{x \mult \bar{\diff} y}\mathrel{\displaystyle{\int}}{[x_2]_{x} \mult [y_1, y_2]_{y}}\biggr\rangle - \biggl\langle{x \mult \bar{\diff} y}\mathrel{\displaystyle{\int}}{[x_1]_{x} \mult [y_1, y_2]_{y}}\biggr\rangle
\\
&= \biggl\langle{x_2 \mult \bar{\diff} y}\mathrel{\displaystyle{\int}}{[y_1, y_2]_{y}}\biggr\rangle - \biggl\langle{x_1 \mult \bar{\diff} y}\mathrel{\displaystyle{\int}}{[y_1, y_2]_{y}}\biggr\rangle
\\
&= x_2 \mult \biggl\langle{\bar{\diff} y}\mathrel{\displaystyle{\int}}{[y_1, y_2]_{y}}\biggr\rangle - x_1 \mult \biggl\langle{\bar{\diff} y}\mathrel{\displaystyle{\int}}{[y_1, y_2]_{y}}\biggr\rangle
\\
&= x_2 \mult \biggl\langle{y}\mathrel{\displaystyle{\int}}{\boundary [y_1, y_2]_{y}}\biggr\rangle - x_1 \mult \biggl\langle{y}\mathrel{\displaystyle{\int}}{\boundary [y_1, y_2]_{y}}\biggr\rangle
\\
&= x_2 \mult (y_2 - y_1) - x_1 \mult (y_2 - y_1)
\\
&= (x_2 - x_1) \mult (y_2 - y_1)
\end{align}
\]
Phew! We found our answer.