Let's take the boundary of the degree two box
\[
\begin{align}
[1, 4]_{x} \mult [2, 3]_{y} &: \BoxType_{(x, y)}^{2}
\end{align}
\]
pictured as follows.
We calculate.
\[
\begin{align}
\boundary \bigl([1, 4]_{x} \mult [2, 3]_{y}\bigr) &= \boundary [1, 4]_{x} \mult [2, 3]_{y} - [1, 4]_{x} \mult \boundary [2, 3]_{y}
\\
&= \bigl([4]_{x} - [1]_{x}\bigr) \mult [2, 3]_{y} - [1, 4]_{x} \mult \bigl([3]_{y} - [2]_{y}\bigr)
\\
&= [4]_{x} \mult [2, 3]_{y} - [1]_{x} \mult [2, 3]_{y} - [1, 4]_{x} \mult [3]_{y} + [1, 4]_{x} \mult [2]_{y}
\\
&= [4]_{x} \mult [2, 3]_{y} + [1]_{x} \mult [3, 2]_{y} + [4, 1]_{x} \mult [3]_{y} + [1, 4]_{x} \mult [2]_{y}
\end{align}
\]
The boundary is the sum of four boxes, each with degree one.
Notice how the boundary cycles, matching the box's orientation.