Let's compute the integral for the following function and blip.
\[
\begin{align}
z &\depends x
&
&
&
b &: \Blip_{x}
\\
z &= 3 x^2
&
&\andSpaced
&
b &= [2]_{x}
\end{align}
\]
This is a quick calculation.
\[
\begin{align}
\biggl\langle{z}\mathrel{\displaystyle{\int}}{b}\biggr\rangle &= \biggl\langle{3 x^2}\mathrel{\displaystyle{\int}}{[2]_{x}}\biggr\rangle = \biggl\langle{12}\mathrel{\displaystyle{\int}}{\sliced}\biggr\rangle = 12
\end{align}
\]
The blip \( [2]_{x} \) tells us to substitute two for \( x \). Having used up the blip, there is nothing left to be done, and so we've found our result.