Let's calculate the integral.
\[
\begin{align}
&\biggl\langle{\log x \mult \bar{\standard}_{x}}\mathrel{\displaystyle{\int}}{[1, \naturalbase]_{x}}\biggr\rangle
\end{align}
\]
To do so, we'll need to write the ruler
\[
\begin{align}
&\log x \mult \bar{\standard}_{x}
\end{align}
\]
as the differential of a function. This is easier said than done! Let's try taking the differential of the function \( x \mult \log x \).
\[
\begin{align}
&\bar{\diff} (x \mult \log x) = \log x \mult \bar{\diff} x + x \mult \frac{1}{x} \mult \bar{\diff} x
\\
&\bar{\diff} (x \mult \log x) = \log x \mult \bar{\diff} x + \bar{\diff} x
\end{align}
\]
Our ruler is a term in this equation. We'll solve for our ruler.
\[
\begin{align}
&\log x \mult \bar{\diff} x = \bar{\diff} (x \mult \log x) - \bar{\diff} x
\\
&\log x \mult \bar{\standard}_{x} = \bar{\diff} (x \mult \log x - x)
\end{align}
\]
We've found an anti-differential! Let's use it to compute the integral.
\[
\begin{align}
\biggl\langle{\log x \mult \bar{\standard}_{x}}\mathrel{\displaystyle{\int}}{[1, \naturalbase]_{x}}\biggr\rangle &= \biggl\langle{\bar{\diff} (x \mult \log x - x)}\mathrel{\displaystyle{\int}}{[1, \naturalbase]_{x}}\biggr\rangle
\\
&= \biggl\langle{x \mult \log x - x}\mathrel{\displaystyle{\int}}{\boundary [1, \naturalbase]_{x}}\biggr\rangle
\\
&= \biggl\langle{x \mult \log x - x}\mathrel{\displaystyle{\int}}{[\naturalbase]_{x}}\biggr\rangle - \biggl\langle{x \mult \log x - x}\mathrel{\displaystyle{\int}}{[1]_{x}}\biggr\rangle
\\
&= (\naturalbase \cdot 1 - \naturalbase) - (1 \mult 0 - 1)
\\
&= 1
\end{align}
\]