15.5 Polar Differentials

The goal of this section is to learn about the polar differentials \( \bar{\diff} \rad \) and \( \bar{\diff} \ang \) by relating them to the standard differentials \( \bar{\diff} x \) and \( \bar{\diff} y \).
Formulas.
We can write the polar differentials as
\[ \begin{align} \bar{\diff} \rad &= \frac{x}{\rad} \mult \bar{\diff} x + \frac{y}{\rad} \mult \bar{\diff} y & &\andSpaced & \bar{\diff} \ang &= \frac{-y}{\rad^2} \mult \bar{\diff} x + \frac{x}{\rad^2} \mult \bar{\diff} y. \end{align} \]
Why?
We relate the standard coordinates to polar coordinates using
\[ \begin{align} x &= \rad \mult \cos \ang \\ y &= \rad \mult \sin \ang. \end{align} \]
Let's take differentials of \( x \) and of \( y \).
\[ \begin{align} \bar{\diff} x &= \cos \ang \mult \bar{\diff} \rad - \rad \mult \sin \ang \mult \bar{\diff} \ang \\ \bar{\diff} y &= \sin \ang \mult \bar{\diff} \rad + \rad \mult \cos \ang \mult \bar{\diff} \ang \end{align} \]
Our plan is to solve for \( \bar{\diff} \rad \) and \( \bar{\diff} \ang \). We multiply each equation by \( \rad \)
\[ \begin{align} \rad \mult \bar{\diff} x &= \rad \mult \cos \ang \mult \bar{\diff} \rad - \rad^2 \mult \sin \ang \mult \bar{\diff} \ang \\ \rad \mult \bar{\diff} y &= \rad \mult \sin \ang \mult \bar{\diff} \rad + \rad^2 \mult \cos \ang \mult \bar{\diff} \ang \end{align} \]
so that we can make substitutions.
\[ \begin{align} \rad \mult \bar{\diff} x &= x \mult \bar{\diff} \rad - \rad y \mult \bar{\diff} \ang \\ \rad \mult \bar{\diff} y &= y \mult \bar{\diff} \rad + \rad x \mult \bar{\diff} \ang \end{align} \]
We can now use these two equations to either eliminate the \( \bar{\diff} a \) terms, or to eliminate the \( \bar{\diff} r \) terms.
\[ \begin{align} \rad x \mult \bar{\diff} x + \rad y \mult \bar{\diff} y &= \bigl(x^2 + y^2\bigr) \mult \bar{\diff} \rad \\ - \rad y \mult \bar{\diff} x + \rad x \mult \bar{\diff} y &= \rad \mult \bigl(y^2 + x^2\bigr) \mult \bar{\diff} \ang \end{align} \]
Simplifying using \( x^2 + y^2 = \rad^2 \),
\[ \begin{align} \rad x \mult \bar{\diff} x + \rad y \mult \bar{\diff} y &= \rad^2 \mult \bar{\diff} \rad \\ - \rad y \mult \bar{\diff} x + \rad x \mult \bar{\diff} y &= \rad^3 \mult \bar{\diff} \ang \end{align} \]
we can solve for the polar differentials!
If we calculate the magnitudes of our polar differentials, we find,
\[ \begin{align} \magnitude \bar{\diff} \rad &= 1 & &\andSpaced & \magnitude \bar{\diff} \ang &= \frac{1}{\rad}. \end{align} \]
The radial ruler \( \bar{\diff} \rad \) is a unit ruler, but the angular ruler \( \bar{\diff} \ang \) is not! This makes some sense if we look at our polar graph paper: the markings of \( \bar{\diff} \ang \) are close together near the origin, and become further apart as we move away from the origin.
We can find a unit angular ruler by scaling. In particular,
\[ \begin{align} \bar{\diff} \rad &= \frac{x}{\rad} \mult \bar{\diff} x + \frac{y}{\rad} \mult \bar{\diff} y & &\andSpaced & \rad \mult \bar{\diff} \ang &= \frac{-y}{\rad} \mult \bar{\diff} x + \frac{x}{\rad} \mult \bar{\diff} y \end{align} \]
are unit rulers.