We can measure the area by integrating the area polyruler.
\[
\begin{align}
A &= \biggl\langle{\rad \mult \bar{\diff} \rad \mult \bar{\diff} \ang}\mathrel{\overset{(\rad, \ang)}{\displaystyle{\int}}}{[\rad_1, \rad_2]_{\rad} \mult [\ang_1, \ang_2]_{\ang}}\biggr\rangle
\\
&= \biggl\langle{\bar{\diff} \biggl(\frac{\rad^2}{2} \mult \bar{\diff} \ang\biggr)}\mathrel{\overset{(\rad, \ang)}{\displaystyle{\int}}}{[\rad_1, \rad_2]_{\rad} \mult [\ang_1, \ang_2]_{\ang}}\biggr\rangle
\\
&= \biggl\langle{\frac{\rad^2}{2} \mult \bar{\diff} \ang}\mathrel{\overset{(\rad, \ang)}{\displaystyle{\int}}}{\boundary \bigl([\rad_1, \rad_2]_{\rad} \mult [\ang_1, \ang_2]_{\ang}\bigr) }\biggr\rangle
\\
&= \biggl\langle{\frac{\rad^2}{2} \mult \bar{\diff} \ang}\mathrel{\overset{(\rad, \ang)}{\displaystyle{\int}}}{\boundary [\rad_1, \rad_2]_{\rad} \mult [\ang_1, \ang_2]_{\ang}}\biggr\rangle - \biggl\langle{\frac{\rad^2}{2} \mult \bar{\diff} \ang}\mathrel{\overset{(\rad, \ang)}{\displaystyle{\int}}}{[\rad_1, \rad_2]_{\rad} \mult \boundary [\ang_1, \ang_2]_{\ang}}\biggr\rangle
\end{align}
\]
The integral on the right will be zero because \( \bar{\diff} \ang_2 = 0 \) and \( \bar{\diff} \ang_1 = 0 \). Let's continue our calculation with the integral on the left.
\[
\begin{align}
A &= \biggl\langle{\frac{\rad^2}{2} \mult \bar{\diff} \ang}\mathrel{\overset{(\rad, \ang)}{\displaystyle{\int}}}{\boundary [\rad_1, \rad_2]_{\rad} \mult [\ang_1, \ang_2]_{\ang}}\biggr\rangle
\\
&= \biggl\langle{\frac{\rad^2}{2} \mult \bar{\diff} \ang}\mathrel{\overset{(\rad, \ang)}{\displaystyle{\int}}}{[\rad_2]_{\rad} \mult [\ang_1, \ang_2]_{\ang}}\biggr\rangle - \biggl\langle{\frac{\rad^2}{2} \mult \bar{\diff} \ang}\mathrel{\overset{(\rad, \ang)}{\displaystyle{\int}}}{[\rad_1]_{\rad} \mult [\ang_1, \ang_2]_{\ang}}\biggr\rangle
\\
&= \biggl\langle{\frac{{\rad_2}^2}{2} \mult \bar{\diff} \ang}\mathrel{\overset{\ang}{\displaystyle{\int}}}{[\ang_1, \ang_2]_{\ang}}\biggr\rangle - \biggl\langle{\frac{{\rad_1}^2}{2} \mult \bar{\diff} \ang}\mathrel{\overset{\ang}{\displaystyle{\int}}}{[\ang_1, \ang_2]_{\ang}}\biggr\rangle
\\
&= \frac{{\rad_2}^2}{2} \mult \biggl\langle{\bar{\diff} \ang}\mathrel{\overset{\ang}{\displaystyle{\int}}}{[\ang_1, \ang_2]_{\ang}}\biggr\rangle - \frac{{\rad_1}^2}{2} \mult \biggl\langle{\bar{\diff} \ang}\mathrel{\overset{\ang}{\displaystyle{\int}}}{[\ang_1, \ang_2]_{\ang}}\biggr\rangle
\\
&= \frac{{\rad_2}^2 - {\rad_1}^2}{2} \mult \biggl\langle{\bar{\diff} \ang}\mathrel{\overset{\ang}{\displaystyle{\int}}}{[\ang_1, \ang_2]_{\ang}}\biggr\rangle
\\
&= \frac{{\rad_2}^2 - {\rad_1}^2}{2} \mult \biggl\langle{\ang}\mathrel{\overset{\ang}{\displaystyle{\int}}}{\boundary [\ang_1, \ang_2]_{\ang}}\biggr\rangle
\\
&= \frac{{\rad_2}^2 - {\rad_1}^2}{2} \mult (\ang_2 - \ang_1)
\end{align}
\]