15.6 Polar Area

A polar box \( [\rad_1, \rad_2]_{\rad} \mult [\ang_1, \ang_2]_{\ang} \) describes the region between two fixed radii and two fixed angles.
We'd like to use Calculus to find the area enclosed by a polar box.
Formula.
In polar coordinates, the area polyruler can be written as
\[ \begin{align} &\rad \mult \bar{\diff} \rad \mult \bar{\diff} \ang. \end{align} \]
Why?
We compute.
\[ \begin{align} \rad \mult \bar{\diff} \rad \mult \bar{\diff} \ang &= \bar{\diff} \rad \mult \bigl(\rad \mult \bar{\diff} \ang\bigr) \\ &= \biggl(\frac{x}{\rad} \mult \bar{\standard}_{x} + \frac{y}{\rad} \mult \bar{\standard}_{y}\biggr) \mult \biggl(\frac{-y}{\rad} \mult \bar{\standard}_{x} + \frac{x}{\rad} \mult \bar{\standard}_{y}\biggr) \\ &= \frac{x^2}{\rad^2} \mult \bar{\standard}_{x} \mult \bar{\standard}_{y} - \frac{y^2}{\rad^2} \mult \bar{\standard}_{y} \mult \bar{\standard}_{x} \\ &= \frac{x^2}{\rad^2} \mult \bar{\standard}_{x} \mult \bar{\standard}_{y} + \frac{y^2}{\rad^2} \mult \bar{\standard}_{x} \mult \bar{\standard}_{y} \\ &= \frac{x^2 + y^2}{\rad^2} \mult \bar{\standard}_{x} \mult \bar{\standard}_{y} \\ &= \bar{\standard}_{x} \mult \bar{\standard}_{y} \end{align} \]
Sure enough, we've found the area polyruler.
This formula will let us compute the area of a polar box!
Theorem.
Consider the polar box
\[ \begin{align} &[\rad_1, \rad_2]_{\rad} \mult [\ang_1, \ang_2]_{\ang} \end{align} \]
where
\[ \begin{align} \rad_1 &: \Number, & \rad_2 &: \Number, & \ang_1 &: \Number, & \ang_2 &: \Number \end{align} \]
are constants. The polar box has area
\[ \begin{align} &\frac{{\rad_2}^2 - {\rad_1}^2}{2} \mult (\ang_2 - \ang_1). \end{align} \]
Why?
We can measure the area by integrating the area polyruler.
\[ \begin{align} A &= \biggl\langle{\rad \mult \bar{\diff} \rad \mult \bar{\diff} \ang}\mathrel{\overset{(\rad, \ang)}{\displaystyle{\int}}}{[\rad_1, \rad_2]_{\rad} \mult [\ang_1, \ang_2]_{\ang}}\biggr\rangle \\ &= \biggl\langle{\bar{\diff} \biggl(\frac{\rad^2}{2} \mult \bar{\diff} \ang\biggr)}\mathrel{\overset{(\rad, \ang)}{\displaystyle{\int}}}{[\rad_1, \rad_2]_{\rad} \mult [\ang_1, \ang_2]_{\ang}}\biggr\rangle \\ &= \biggl\langle{\frac{\rad^2}{2} \mult \bar{\diff} \ang}\mathrel{\overset{(\rad, \ang)}{\displaystyle{\int}}}{\boundary \bigl([\rad_1, \rad_2]_{\rad} \mult [\ang_1, \ang_2]_{\ang}\bigr) }\biggr\rangle \\ &= \biggl\langle{\frac{\rad^2}{2} \mult \bar{\diff} \ang}\mathrel{\overset{(\rad, \ang)}{\displaystyle{\int}}}{\boundary [\rad_1, \rad_2]_{\rad} \mult [\ang_1, \ang_2]_{\ang}}\biggr\rangle - \biggl\langle{\frac{\rad^2}{2} \mult \bar{\diff} \ang}\mathrel{\overset{(\rad, \ang)}{\displaystyle{\int}}}{[\rad_1, \rad_2]_{\rad} \mult \boundary [\ang_1, \ang_2]_{\ang}}\biggr\rangle \end{align} \]
The integral on the right will be zero because \( \bar{\diff} \ang_2 = 0 \) and \( \bar{\diff} \ang_1 = 0 \). Let's continue our calculation with the integral on the left.
\[ \begin{align} A &= \biggl\langle{\frac{\rad^2}{2} \mult \bar{\diff} \ang}\mathrel{\overset{(\rad, \ang)}{\displaystyle{\int}}}{\boundary [\rad_1, \rad_2]_{\rad} \mult [\ang_1, \ang_2]_{\ang}}\biggr\rangle \\ &= \biggl\langle{\frac{\rad^2}{2} \mult \bar{\diff} \ang}\mathrel{\overset{(\rad, \ang)}{\displaystyle{\int}}}{[\rad_2]_{\rad} \mult [\ang_1, \ang_2]_{\ang}}\biggr\rangle - \biggl\langle{\frac{\rad^2}{2} \mult \bar{\diff} \ang}\mathrel{\overset{(\rad, \ang)}{\displaystyle{\int}}}{[\rad_1]_{\rad} \mult [\ang_1, \ang_2]_{\ang}}\biggr\rangle \\ &= \biggl\langle{\frac{{\rad_2}^2}{2} \mult \bar{\diff} \ang}\mathrel{\overset{\ang}{\displaystyle{\int}}}{[\ang_1, \ang_2]_{\ang}}\biggr\rangle - \biggl\langle{\frac{{\rad_1}^2}{2} \mult \bar{\diff} \ang}\mathrel{\overset{\ang}{\displaystyle{\int}}}{[\ang_1, \ang_2]_{\ang}}\biggr\rangle \\ &= \frac{{\rad_2}^2}{2} \mult \biggl\langle{\bar{\diff} \ang}\mathrel{\overset{\ang}{\displaystyle{\int}}}{[\ang_1, \ang_2]_{\ang}}\biggr\rangle - \frac{{\rad_1}^2}{2} \mult \biggl\langle{\bar{\diff} \ang}\mathrel{\overset{\ang}{\displaystyle{\int}}}{[\ang_1, \ang_2]_{\ang}}\biggr\rangle \\ &= \frac{{\rad_2}^2 - {\rad_1}^2}{2} \mult \biggl\langle{\bar{\diff} \ang}\mathrel{\overset{\ang}{\displaystyle{\int}}}{[\ang_1, \ang_2]_{\ang}}\biggr\rangle \\ &= \frac{{\rad_2}^2 - {\rad_1}^2}{2} \mult \biggl\langle{\ang}\mathrel{\overset{\ang}{\displaystyle{\int}}}{\boundary [\ang_1, \ang_2]_{\ang}}\biggr\rangle \\ &= \frac{{\rad_2}^2 - {\rad_1}^2}{2} \mult (\ang_2 - \ang_1) \end{align} \]
Our theorem gives us a formula for the area enclosed within a circle.
Formula.
The area inside a circle with radius \( R \) is
\[ \begin{align} &\frac{R^2}{2} \mult \revolution. \end{align} \]
Why?
We can describe the region as the polar box \( [0, R]_{\rad} \mult [0, \revolution]_{\ang} \). We just apply our theorem!