Let's take the derivative of the function
\[
\begin{align}
z &\depends x
\\
z &= x^3 - 2 x.
\end{align}
\]
We can use all of the differential laws we've studied when calculating the derivative.
\[
\begin{align}
\overset{x}{\diff} z &= \overset{x}{\diff} \bigl(x^3 - 2 x\bigr)
\\
&= \overset{x}{\diff} \bigl(x^3\bigr) - \overset{x}{\diff} (2 x)
\\
&= 3 x^2 \mult \overset{x}{\diff} x - 2 \mult \overset{x}{\diff} x
\\
&= 3 x^2 \mult 1 - 2 \mult 1
\\
&= 3 x^2 - 2
\end{align}
\]
We've found the derivative!