We can write the cube root as a base function.
\[
\begin{align}
z &\depends x
\\
z &= x^{1/3}
\end{align}
\]
Here's the first derivative
\[
\begin{align}
\overset{x}{\diff} z &= \overset{x}{\diff} \bigl(x^{1/3}\bigr) = \frac{1}{3} \mult x^{-2/3}
\end{align}
\]
and here's the second.
\[
\begin{align}
\overset{x}{\diff} \overset{x}{\diff} z &= \overset{x}{\diff} \biggl(\frac{1}{3} \mult x^{-2/3}\biggr)
\\
&= \frac{1}{3} \mult \overset{x}{\diff} \bigl(x^{-2/3}\bigr)
\\
&= \frac{1}{3} \mult \frac{-2}{3} \mult x^{-5/3} \mult \overset{x}{\diff} x
\\
&= \frac{-2}{9} \mult x^{-5/3}
\end{align}
\]
Using the differential law for base functions made this calculation much easier.