Let's graph the function
\[
\begin{align}
z &\mathrel{\overset{f}{\leftarrow}} x
\\
z &= 2 \mult \sqrt[2]{x}.
\end{align}
\]
We'll start by drawing a schematic for \( f \).
By introducing the variable \( z^{\prime} \) on the intermediate wire, we can decompose \( f \).
\[
\begin{align}
z &\depends z^{\prime}
&
&
&
z^{\prime} &\depends x
\\
z &= 2 \mult z^{\prime}
&
&\andSpaced
&
z^{\prime} &= \sqrt[2]{x}
\end{align}
\]
We know how to graph the square root function, \( z^{\prime} \depends x \). To graph the function \( z \depends x \), each height \( z \) is twice the height \( z^{\prime} \).