Consider the function
\[
\begin{align}
z &\depends x
\\
z &= \frac{x^2}{x + 5}.
\end{align}
\]
We disallow the input \( x = -5 \) to avoid dividing by zero. Let's compute the differential.
\[
\begin{align}
\diff z &= \diff \biggl(\frac{x^2}{x + 5}\biggr)
\\
&= \frac{1}{x + 5} \mult \diff \bigl(x^2\bigr) - \frac{x^2}{(x + 5)^2} \mult \diff (x + 5)
\\
&= \frac{1}{x + 5} \mult 2 x \mult \diff x - \frac{x^2}{(x + 5)^2} \mult \diff x
\\
&= \biggl(\frac{2 x}{x + 5} - \frac{x^2}{(x + 5)^2}\biggr) \mult \diff x
\end{align}
\]
We've written our answer in standard form.