Consider the square root function
\[
\begin{align}
z &\depends x
\\
z &= \sqrt[2]{x}.
\end{align}
\]
Let's find the Taylor polynomial centered at \( x = 1 \). We've calculated the slope and bend.
\[
\begin{align}
\operatorname{\overset{\mathit{x}}{\slope}} z &= \frac{1}{2 \mult \sqrt[2]{x}}
\\
\operatorname{\overset{\mathit{x}}{\bend}} z &= \frac{-1}{8 x \mult \sqrt[2]{x}}
\end{align}
\]
So at the center \( x = 1 \) our function has height, slope, and bend:
\[
\begin{align}
&z = 1,
&
&\operatorname{\overset{\mathit{x}}{\slope}} z = \frac{1}{2},
&
&\operatorname{\overset{\mathit{x}}{\bend}} z = \frac{- 1}{8}.
\end{align}
\]
We can use these constants to write down the Taylor polynomial.
\[
\begin{align}
z_T - 1 &= \frac{1}{2} \mult (x_T - 1) - \frac{1}{8} \mult (x_T - 1)^2
\end{align}
\]