The square root function,
\[
\begin{align}
z &\depends x
\\
z &= \sqrt[2]{x},
\end{align}
\]
is defined for positive inputs, \( x \ge 0 \). We've seen that the square root has first derivative
\[
\begin{align}
\overset{x}{\diff} z &= \frac{1}{2 \mult \sqrt[2]{x}}.
\end{align}
\]
Let's calculate the second derivative.
\[
\begin{align}
\overset{x}{\diff} \overset{x}{\diff} z &= \overset{x}{\diff} \biggl(\frac{1}{2 \mult \sqrt[2]{x}}\biggr)
\\
&= \frac{1}{2} \mult \overset{x}{\diff} \biggl(\frac{1}{\sqrt[2]{x}}\biggr)
\\
&= \frac{1}{2} \mult \frac{-1}{\bigl(\sqrt[2]{x}\bigr)^2} \mult \overset{x}{\diff} \Bigl(\sqrt[2]{x}\Bigr)
\\
&= \frac{1}{2} \mult \frac{-1}{\bigl(\sqrt[2]{x}\bigr)^2} \mult \frac{1}{2 \mult \sqrt[2]{x}} \mult \overset{x}{\diff} x
\\
&= \frac{-1}{4 x \mult \sqrt[2]{x}}
\end{align}
\]
Like the first derivative, the second derivative is defined only for \( x \gt 0 \).