In the \( \{ {y = -1} \} \)-slice, we see how \( z \) depends on \( x \).
\[
\begin{align}
z &\depends x
\\
z &= x^2 + 1
\end{align}
\]
This is the correct slice to find the \( x \)-slope.
\[
\begin{align}
\operatorname{\overset{\mathit{x}}{\slope}} z &= 2
\end{align}
\]
We locate \( p \) in this slice at \( x = 1 \). At \( p \), we find our slope!