8.2 Slope

The \( x \)-slope and the \( y \)-slope of a function \( z \depends (x, y) \) are the partials:
\[ \begin{align} \operatorname{\overset{\mathit{x}}{\slope}} z &: \Number & & & \operatorname{\overset{\mathit{y}}{\slope}} z &: \Number \\ \operatorname{\overset{\mathit{x}}{\slope}} z &= \overset{x}{\diff} z & &\andSpaced & \operatorname{\overset{\mathit{y}}{\slope}} z &= \overset{y}{\diff} z. \end{align} \]
We can picture these slopes in the vertical slices of the graph.
Example.
Let's investigate the slopes for the bowl,
\[ \begin{align} z &\depends (x, y) \\ z &= x^2 + y^2, \end{align} \]
at the point \( p = (1, -1) \). We calculate slopes as partials.
\[ \begin{align} \operatorname{\overset{\mathit{x}}{\slope}} z &= 2 x & \operatorname{\overset{\mathit{y}}{\slope}} z &= 2 y \end{align} \]
We can find the slopes at \( p \) by setting \( x = 1 \) and \( y = -1 \).
\[ \begin{align} \operatorname{\overset{\mathit{x}}{\slope}} z &= 2 & \operatorname{\overset{\mathit{y}}{\slope}} z &= -2 \end{align} \]
What do these slopes say about our surface, the bowl? Let's take some vertical slices through \( p \) to find out!
\( \{ {y = -1} \} \)-slice.
In the \( \{ {y = -1} \} \)-slice, we see how \( z \) depends on \( x \).
\[ \begin{align} z &\depends x \\ z &= x^2 + 1 \end{align} \]
This is the correct slice to find the \( x \)-slope.
\[ \begin{align} \operatorname{\overset{\mathit{x}}{\slope}} z &= 2 \end{align} \]
We locate \( p \) in this slice at \( x = 1 \). At \( p \), we find our slope!
\( \{ {x = 1} \} \)-slice.
Now let's see how \( z \) depends on \( y \).
\[ \begin{align} z &\depends y \\ z &= y^2 + 1 \end{align} \]
We should be able to find the \( y \)-slope in this slice.
\[ \begin{align} \operatorname{\overset{\mathit{y}}{\slope}} z &= -2 \end{align} \]
By looking at \( y = -1 \), we find our point \( p \) and the \( y \)-slope.
When we calculate partials we learn the slopes for every point in the \( (x, y) \)-coordinate plane.
\[ \begin{align} \overset{x}{\diff} z &\depends (x, y) & \overset{y}{\diff} z &\depends (x, y) \end{align} \]
We may localize the slope at any particular point \( p = (x_p, y_p) \).
Example.
Let's find the \( x \) and \( y \)-slopes at the point \( p = (0, -1) \) for the function
\[ \begin{align} z &\depends (x, y) \\ z &= y^3 \mult \exp \bigl(x^2\bigr). \end{align} \]
The slopes are
\[ \begin{align} \operatorname{\overset{\mathit{x}}{\slope}} z &= 2 x y^3 \mult \exp \bigl(x^2\bigr) \\ \operatorname{\overset{\mathit{y}}{\slope}} z &= 3 y^2 \mult \exp \bigl(x^2\bigr). \end{align} \]
Localizing at the point \( p = (0, -1) \), we find
\[ \begin{align} \operatorname{\overset{\mathit{x}}{\slope}} z &= 0 \\ \operatorname{\overset{\mathit{y}}{\slope}} z &= 3. \end{align} \]
At \( p \), the \( x \)-slope of \( z \) is zero, and the \( y \)-slope of \( z \) is three.