Consider the function
\[
\begin{align}
z &\depends (x, y)
\\
z &= x^3 - y^2 - 3 x.
\end{align}
\]
Let's use our tools to look for low points and high points! We'll start by finding slopes
\[
\begin{align}
\operatorname{\overset{\mathit{x}}{\slope}} z &= 3 x^2 - 3
\\
\operatorname{\overset{\mathit{y}}{\slope}} z &= - 2 y
\end{align}
\]
so that we can find level points. Setting the \( x \)-slope equal to zero, we find
\[
\begin{align}
&3 x^2 - 3 = 0
\\
&3 x^2 = 3
\\
&x^2 = 1
\\
&x = 1 \orSpaced x = -1.
\end{align}
\]
Setting the \( y \)-slope equal to zero gives
\[
\begin{align}
&{-2} y = 0
\\
&y = 0.
\end{align}
\]
We conclude that there are only two level points on our graph, \( (1, 0) \) and \( (-1, 0) \). Let's classify these level points! To this end, we've computed the \( x \)-bend, the \( y \)-bend, the warp, and the saddle discriminant.
\[
\begin{align}
\operatorname{\overset{\mathit{x}}{\bend}} z &= 3 x
&
\operatorname{\overset{\mathit{y}}{\bend}} z &= -1
&
\warp z &= 0
&
\discriminant z &= 12 x
\end{align}
\]