Consider the function
\[
\begin{align}
z &\depends (x, y)
\\
z &= x y^3 + 1.
\end{align}
\]
Let's take the differential twice. The first differential is a metric
\[
\begin{align}
\hat{\diff} z &= \hat{\diff} \bigl(x y^3 + 1\bigr)
\\
&= \hat{\diff} \bigl(x y^3\bigr)
\\
&= y^3 \mult \hat{\diff} x + x \mult \hat{\diff} \bigl(y^3\bigr)
\\
&= y^3 \mult \hat{\standard}_{x} + x \mult 3 y^2 \mult \hat{\diff} y
\\
&= y^3 \mult \hat{\standard}_{x} + 3 x y^2 \mult \hat{\standard}_{y}
\end{align}
\]
and the second differential is a polymetric with degree two.
\[
\begin{align}
\hat{\diff} \hat{\diff} z &= \hat{\diff} \bigl(y^3 \mult \hat{\standard}_{x} + 3 x y^2 \mult \hat{\standard}_{y}\bigr)
\\
&= \hat{\diff} \bigl(y^3 \mult \hat{\standard}_{x}\bigr) + \hat{\diff} \bigl(3 x y^2 \mult \hat{\standard}_{y}\bigr)
\\
&= \hat{\diff} \bigl(y^3\bigr) \mult \hat{\standard}_{x} + \hat{\diff} \bigl(3 x y^2\bigr) \mult \hat{\standard}_{y}
\\
&= 3 y^2 \mult \hat{\diff} y \mult \hat{\standard}_{x} + 3 \mult \hat{\diff} (x y^2) \mult \hat{\standard}_{y}
\\
&= 3 y^2 \mult \hat{\standard}_{y} \mult \hat{\standard}_{x} + 3 \mult \bigl( y^2 \mult \hat{\diff} x + x \mult \hat{\diff} \bigl(y^2\bigr) \bigr) \mult \hat{\standard}_{y}
\\
&= 3 y^2 \mult \hat{\standard}_{y} \mult \hat{\standard}_{x} + 3 \mult \bigl( y^2 \mult \hat{\diff} x + x \mult 2 y \mult \hat{\diff} y \bigr) \mult \hat{\standard}_{y}
\\
&= 3 y^2 \mult \hat{\standard}_{y} \mult \hat{\standard}_{x} + 3 y^2 \mult \hat{\standard}_{x} \mult \hat{\standard}_{y} + 6 x y \mult \hat{\standard}_{y} \mult \hat{\standard}_{y}
\\
&= 6 y^2 \mult \hat{\standard}_{x} \mult \hat{\standard}_{y} + 6 x y \mult \hat{\standard}_{y} \mult \hat{\standard}_{y}
\end{align}
\]