We learn how the graph peels away from its tangent plane by looking at the Hessian
\[
\begin{align}
\hessian z &= a \mult \hat{\standard}_{x}^2 + b \mult \hat{\standard}_{x} \mult \hat{\standard}_{y} + c \mult \hat{\standard}_{y}^2
\end{align}
\]
where
\[
\begin{align}
a &= \operatorname{\overset{\mathit{x}}{\bend}} z,
&
b &= \warp z,
&
c &= \operatorname{\overset{\mathit{y}}{\bend}} z.
\end{align}
\]
By using a bit of algebraic dark magic—completing the square—we can rewrite the Hessian polymetric as
\[
\begin{align}
\hessian z &= a \mult \biggl( \biggl(\hat{\standard}_{x} + \frac{b}{2 a} \mult \hat{\standard}_{y}\biggr)^2 - \frac{b^2 - 4 a c}{(2 a)^2} \mult {\hat{\standard}_{y}}^2 \biggr).
\end{align}
\]
The discriminant
\[
\begin{align}
\discriminant z &= b^2 - 4 a c
\end{align}
\]
determines whether our polymetric factors, and thereby determines the shape of the graph. You might recognize the discriminant: it also shows up in the quadratic formula!