Let's write our ruler \( r \) and its transpose, \( v = \transpose r \), in their standard forms
\[
\begin{align}
r &= a \mult \bar{\standard}_{x} + b \mult \bar{\standard}_{y},
\\
v &= a \mult \vec{\standard}_{x} + b \mult \vec{\standard}_{y}.
\end{align}
\]
Looking to geometry, we see that the vector
\[
\begin{align}
w &= b \mult \vec{\standard}_{x} - a \mult \vec{\standard}_{y}
\end{align}
\]
is perpendicular to \( v \).
We'll have verified our first statement if we can show that \( w \) is parallel to the markings of \( r \). In other words, it suffices to check that measuring \( w \) with \( r \) gives zero.
\[
\begin{align}
\langle{r}\mathbin{|}{w}\rangle &= \bigl\langle{a \mult \bar{\standard}_{x} + b \mult \bar{\standard}_{y}}\mathbin{\big|}{b \mult \vec{\standard}_{x} - a \mult \vec{\standard}_{y}}\bigr\rangle
\\
&= a b \mult \bigl\langle{\bar{\standard}_{x}}\mathbin{\big|}{\vec{\standard}_{x}}\bigr\rangle - a^2 \mult \bigl\langle{\bar{\standard}_{x}}\mathbin{\big|}{\vec{\standard}_{y}}\bigr\rangle + b^2 \mult \bigl\langle{\bar{\standard}_{y}}\mathbin{\big|}{\vec{\standard}_{x}}\bigr\rangle - b a \mult \bigl\langle{\bar{\standard}_{y}}\mathbin{\big|}{\vec{\standard}_{y}}\bigr\rangle
\\
&= a b - b a
\\
&= 0.
\end{align}
\]
To explain the second statement, we can use \( r \) to measure its transpose vector, \( v \).
\[
\begin{align}
\langle{r}\mathbin{|}{v}\rangle &= \bigl\langle{a \mult \bar{\standard}_{x} + b \mult \bar{\standard}_{y}}\mathbin{\big|}{a \mult \vec{\standard}_{x} + b \mult \vec{\standard}_{y}}\bigr\rangle
\\
&= a^2 \mult \bigl\langle{\bar{\standard}_{x}}\mathbin{\big|}{\vec{\standard}_{x}}\bigr\rangle + a b \mult \bigl\langle{\bar{\standard}_{x}}\mathbin{\big|}{\vec{\standard}_{y}}\bigr\rangle + b a \mult \bigl\langle{\bar{\standard}_{y}}\mathbin{\big|}{\vec{\standard}_{x}}\bigr\rangle + b^2 \mult \bigl\langle{\bar{\standard}_{y}}\mathbin{\big|}{\vec{\standard}_{y}}\bigr\rangle
\\
&= a^2 + b^2
\end{align}
\]
This measurement is positive and so the transpose must point from smaller to larger markings.