Let's redo the above example
\[
\begin{align}
z &\depends (x, y)
\\
z &= x^2 y
\end{align}
\]
but this time using the differential.
\[
\begin{align}
\diff z &= \diff \bigl(x^2 y\bigr)
\\
&= y \mult \diff \bigl(x^2\bigr) + x^2 \mult \diff y
\\
&= 2 x y \mult \diff x + x^2 \mult \diff y
\end{align}
\]
Again, let's assert dependence.
\[
\begin{align}
y &\depends x
\\
y &= x^2
\end{align}
\]
We continue our computation by substituting \( x^2 \) for \( y \).
\[
\begin{align}
\diff z &= 2 x y \mult \diff x + x^2 \mult \diff y
\\
&= 2 x \mult x^2 \mult \diff x + x^2 \mult \diff \bigl(x^2\bigr)
\\
&= 2 x^3 \mult \diff x + x^2 \mult 2 x \mult \diff x
\\
&= 2 x^3 \mult \diff x + 2 x^3 \mult \diff x
\\
&= 4 x^3 \mult \diff x
\end{align}
\]
Sure enough, this agrees with the direct calculation.
\[
\begin{align}
z &= x^4
\\
\diff z &= \diff \bigl(x^4\bigr) = 4 x^3 \mult \diff x
\end{align}
\]