Consider the function
\[
\begin{align}
z &\depends (x, y)
\\
z &= x^2 y - x y^2.
\end{align}
\]
Let's find the tangent metric and localize it at the point \( p = (3, 1) \).
\[
\begin{align}
\tangent z &= \hat{\diff} z
\\
&= \bigl(2 x y - y^2\bigr) \mult \hat{\standard}_{x} + \bigl(x^2 - 2 x y\bigr) \mult \hat{\standard}_{y}
\end{align}
\]
Localizing at \( p \), we find
\[
\begin{align}
\tangent z &= 5 \mult \hat{\standard}_{x} - 3 \mult \hat{\standard}_{y}.
\end{align}
\]
By applying the tangent metric, we can find changes in height due to changes in input.
\[
\begin{align}
\tangent z \of [2; 0] &= 10
\\
\tangent z \of [0; 2] &= -6
\\
\tangent z \of [1; 1] &= 2
\end{align}
\]